Fractional Generalization of Kac Integral
نویسندگان
چکیده
Kac integral [1, 2, 3] appears as a path-wise presentation of Brownian motion and shortly becomes, with Feynman approach [4], a powerful tool to study different processes described by the wave-type or diffusion-type equations. In the basic papers [1, 4], the paths distribution was based on averaging over the Wiener measure. It is worthwhile to mention the Kac comment that the Wiener measure can be replaced by the Lévy distribution that has infinite second and higher moments. There exists a fairly rich literature related to functional integrals with generalization of the Wiener measure (see for example [5, 6]). Recently the Lévy measure was applied to derive a fractional generalization of the Schrödinger equation [7, 8] using the Feynman-type approach and expressing the Lévy measure through the Fox function [9] In this paper, we derive the fractional generalization of the diffusion equation (FDE) from the path integral over the Lévy measure using the integral equation approach of Kac.
منابع مشابه
A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملFractional Poisson Process
For almost two centuries, Poisson process with memoryless property of corresponding exponential distribution served as the simplest, and yet one of the most important stochastic models. On the other hand, there are many processes that exhibit long memory (e.g., network traffic and other complex systems). It would be useful if one could generalize the standard Poisson process to include these p...
متن کاملAnalytic Properties of Fractional Schrödinger Semigroups and Gibbs Measures for Symmetric Stable Processes
We establish a Feynman-Kac-type formula to define fractional Schrödinger operators for (fractional) Kato-class potentials as self-adjoint operators. In this functional integral representation symmetric α-stable processes appear instead of Brownian motion. We derive asymptotic decay estimates on the ground state for potentials growing at infinity. We prove intrinsic ultracontractivity of the Fey...
متن کاملFractional quantum mechanics
A path integral approach to quantum physics has been developed. Fractional path integrals over the paths of the Levy flights are defined. It is shown that if the fractality of the Brownian trajectories leads to standard quantum and statistical mechanics, then the fractality of the Levy paths leads to fractional quantum mechanics and fractional statistical mechanics. The fractional quantum and s...
متن کاملSome new results using Hadamard fractional integral
Fractional calculus is the field of mathematical analysis which deals with the investigation and applications of integrals and derivatives of arbitrary order. The purpose of this work is to use Hadamard fractional integral to establish some new integral inequalities of Gruss type by using one or two parameters which ensues four main results . Furthermore, other integral inequalities of reverse ...
متن کامل